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LE'ITER TO THE EDITOR 

q-partitioning of graphs with finite coordination number 

Yadin Y Goldschmidt and Pik-Yin Lait 
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA 

Received 6 July 1988 

Abstract. The NP-complete optimisation problem of q-partitioning of graphs with finite 
connectivity is discussed. Using the effective local field method, we obtain the local field 
distributions with and without the continuous part and use them to calculate the ground- 
state energies of the three-state Potts spin glass on lattices with finite coordination number 
equal to three. This in turn gives analytic results for the optimal cost of the 3-partitioning 
of graphs. We perform simulations of actual 3-partitions of random graphs to compare 
with our theoretical results and obtain very good agreement. Ways for further improvement 
of the estimates are discussed. 

Recently, there has been much interest in applying statistical mechanical concepts and 
techniques to NP-complete optimisation problems. In particular, attention has been 
focused on the graph bi-partitioning optimisation problem [ 1-31 which is related to 
the Ising spin glass. The optimisation problem consists of dividing a given graph into 
subgraphs such that the intersubgraph connections are minimised. Special attention 
has been focused on partitioning of graphs with a finite number of neighbours [2,4] 
because of its practical importance and its relation to the short-ranged spin glasses. 
In this letter, we investigate the problem of q-partitioning of graphs with finite 
coordination number, and in particular the problem of 3-partitioning. For graphs with 
extensive connectivity, this problem has been shown [5] to be equivalent to the q-state 
Potts spin glass at zero temperature. Here we evaluate the ground-state energy of the 
three-state Potts spin glass on a lattice with coordination number equal to three within 
the replica symmetric theory using the effective local field treatment [4,6]. This gives 
an analytic prediction for the minimal cost of the corresponding graph 3-partitioning 
problem. We also simulate random graphs and find the near-optimal cost to compare 
well with our analytic result. 

First, we consider the q-state Potts spin-glass Hamiltonian 

where ui is the Potts spin at the ith site which can take q values. The model is defined 
on a random graph, i.e. the spins are located at the vertices of the graphs and Jij are 
the bond strengths. The sum is over distinct pairs of sites i and j that are connected 
by a bond. The random couplings Jo follow a certain probability distribution P ( J U ) .  

t Address after 1 August 1988: Department of Physics and Astronomy, University of Georgia, Athens, 
CA 30602, USA. 
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For the case of graphs with a finite and fixed number of neighbours c, the probability 
distribution of the effective local fields is given by the recursion relation [7] 

4 4 

y = l  a = l  
p ( v ( ’ ) ,  , . . , v 4 ) =  I d J P ( J )  n dh(Y)p(C-’)(h(’’, . . . , h‘q’)  n 6 ( v ‘ ” - X ‘ “ ’ )  (2a) 

where 

and 

m n (dvj” .  . . dTjq)p(vjl’, . . . , r ] j 4 ) ) )  fi 6( It‘*’- 7ja)). (2c) 

p is the inverse temperature and 2’ denotes the sum over p excluding a. Notice that 
replica symmetry is not broken in this kind of effective local field treatment [4]. The 
free energy per site is given by [7] 

= I j = *  a = l  j = 1  

For evaluating the ground-state energy, we need to find the zero-temperature solution 
of equations (2). Taking P ( J )  to be *l, i.e. 

P ( J ) = $ { 6 ( J - l ) + 6 ( J + l ) }  (4) 

a solution to equation (2) in the p + 00 limit has been given in [7] for general q. Notice 
that the same equations hold for a Potts spin glass on a Bethe lattice with c nearest 
neighbours. We now give the results for the three-state Potts model with a fixed number 
of neighbours. As shown in [7], the local effective field distribution is given by (adding 
the permutations assures that p (  ~ ( l ’ ,  . . . , T ‘ ~ ’ )  is invariant under permutations of its 
arguments) 

p ( ~ ( ~ ) ,  T ( ~ ) ,  vO) )  = cos(  v(I))6( ~ ( ~ ) ) 6 (  ~ ( ~ 9  
+ C ~ [ S ( ~ ( ~ )  -:)a( v ( 2 )  -;)a( r ) ( 3 )  + f) + 2 permutations] 

+ c2[a(7(l) -$)a( q(‘) + i ) ~ (  5)  + 2 permutations] 

where the coefficients also satisfy the normalisation condition 

c0+3c1+3c2= 1. 
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By substituting (5) into (2), algebraic equations for the coefficients have been obtained 
[7] for the case of coordination number c=3 .  These equations possess only one 
solution with all c, positive, their values are 

co = 1571307 - 64111307 - 0.4466 

c1 = 1781307 -424111307 = 0.1261 

c2 = -128/307+44jfi/307 -0.0584. 

(7) 

Substituting (5) into (3), we worked out, after some tedious algebra, the ground-state 
energy for the three-state Potts spin glass on a graph with fixed coordination number 
equal to three: 

F (  T=O)/N = 2[9c;(c, + 2 ~ 2 ) + 5 4 ~ 0 ( ~ : +  c;) 

+ 108c0c, c2+ 189c:c2+ 216c, c:+63c:+ 72c:] 

-$(3~:+ 378cicf-t 414&+ ~ O C ~ C ,  + 84cic2+ 8 2 8 ~ 2 ~ 1 ~ 2  +900cOc: 

+ 1008c0c:+ 2736coc:c2+ 2880coc, c:+747ct+ 828c:+ 3 0 6 0 ~ : ~ ~  

+4716c~c~+3204c ,c~) .  (8) 
Using the normalisation constraint (6) to eliminate c2, we have verified that the solution 
(7) satisfies the saddle-point equations 

;aF aF - -0. 
ac, ac, (9) 

With the values of the c given by (7), we have 

F (  T = 0)/ N E -2.2193. (10) 

This is the ground-state energy of the three-state Potts spin glass on a lattice with three 
nearest neighbours described by (1) and (4) without replica symmetry breaking, and 
without including a continuous part in the solution (5). 

We now consider the inclusion of a continuous part in the solution (6). In the case 
of the Ising spin glass ( q  = 2), a continuous part does exist and the 8-function solution 
has been shown [8,9] to be unstable to the inclusion of a small continuous part. The 
continuous part has been obtained numerically [9, 101 and analytically [ 113. It was 
shown [9,10] to affect very little the value of the ground-state energy as compared 
with the solution with no continuous part (less than 0.5%). From general considerations 
we expect a continuous part to exist also in the Potts spin-glass case. This is because 
the appearance of such a continuous piece reflects the sensitivity of the system to a 
small change in the boundary conditions in the glass phase which is not likely to occur 
if the effective fields are locked only onto a few rational values. To determine the 
entire local field in the present case, we simulate the recursion relation (2) numerically 
using a method similar to [9]. We start with some arbitrary initial field distribution 
on a two-dimensional square corresponding to -is h") ,  h ' 2 ' s i  and then iterate (2) 
to obtain a new field distribution. This is done by combining two values of the field 
via (2) to produce two new values (corresponding to J = f l )  and then replacing two 
old values chosen at random with the new values. After some passes for the distribution 
to become stationary, statistics is taken by accumulating the effective field values on 
a 20x20 grid to produce the distribution p(h '" ,  h"') ( l ~ ' ~ '  is fixed by the condition 
h( l '+h '2 '+  h'3'=0). The form of p(h'",  h'2')  is depicted in figure 1. The seven S 



L1046 Letter to the Editor 

Figure 1. Effective field distribution g ( h ( ' ) ,  h'") for q = 3 and c = 3. The S functions peak 
at positions given by equation ( 6 ) .  

functions corresponding to (5) are prominent. In addition, there is quite a rich structure 
due to the continuous part. It is clear from the figure that there are ridges joining the 
6 functions. Thus, we explicitly demonstrate the existence of a continuous part in the 
effective field solution. Using this effective field solution, we calculate the zero- 
temperature free energy through (3) using Monte Carlo integration by drawing effective 
fields from the distribution p(h" ' ,  h'2')  which has been determined previously. We 
obtained 

F (  T = 0 ) /  N = -2.0986. (11) 
Next we consider the optimisation problem of q-partitioning of a graph. It is an 

NP-complete optimisation problem which can be described by the Potts spin glass [ 5 ] .  
This problem is specified by a graph G with N vertices where N is an integral multiple 
of q. One is then asked to divide the N vertices into q groups of equal size such that 
the total number of intergroup edges is minimised. This problem can be described by 
the Hamiltonian in (1). In this case, Ju = 1 if the corresponding edge of G exists and 
is zero otherwise. In the case of graphs with fixed coordination number c, the Ju also 
satisfy 

N 
Jv = c. 

j = 1  

Thus the problem is essentially a dilute ferromagnetic Potts system but subjected to 
the antiferromagnetic constraint 

N 

ij (Sr i ,  -i) 4 = 0. 
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When G is partitioned into q equal subgraphs, all the spins that take the same value 
belong to the same subgraph. Constraint (13) simply follows from the requirement 
that the q subgraphs are equal in size and mutually disjoint. The cost to be minimised 
is the intersubgraph connections. It can be shown following the steps in [5] that the 
minimal cost is related to H via 

The first term in (14)  corresponds to the expected number of intersubgraph edges 
without minimisation and the second term (which is negative) is the improvement due 
to optimisation. It is worth noting that in this case the free energy F is extensive and 
the improvement is of the same order in N as the firstterm, whereas in the case of 
extensive connectivity [5], the improvement is of O ( J N )  less than the unoptimised 
term. Hence, the effect of minimisation is much more important in the present 
finite-connectivity case, especially in the large- N limit. 

In the case of extensive connectivity, the q-partitioning problem is shown to be 
equivalent to the infinite-ranged Potts spin glass in the zero-temperature limit [ 1,5]. 
However, in the case of finite connectivity, there were suggestions that the spin glass 
solution is not the correct solution [3,12].  We will come back to this issue later. If 
we take the spin-glass solution and hence the value of the ground-state energy given 
by (IO) and (1 l ) ,  we have for q = 3 and fixed coordination number c = 3, the optimised 
cost 

Cmin = 0.260N 

Cmin = 0 . 3 0 0 N  

no continuous part 

with continuous part. 

To check the above analytic result, we performed simulations for 3-partitioning of 
graphs with coordination number fixed to be three. We use an iterative improvement 
algorithm to find the near-optimal cost. In order to get the best minimal cost, we 
started, for each graph, with several initial partitionings and picked the best result. 
The procedure is repeated for several realisations of graphs generated randomly and 
the quenched average is then taken. Table 1 shows the results of the simulations. The 
agreement with the analytic result with the inclusion of the continuous part is very 
good and is better for larger N. This is expected since (15) holds in the large- N limit. 
As N + CO, the simulation value seems to approach very closely our analytic value. 

We now discuss the possible sources that can give rise to corrections to our analytic 
result for the graph partitioning problem. These are: 

(i)  the effect of replica symmetry breaking (RSB); 

Table 1. Simulation results for 3-partitioning of graphs with number of neighbours of each 
vertex equal to 3. N is the number of vertices of the graph. CSimul is the simulation result 
obtained by averaging ten random graphs. Cs is the cost obtained analytically using 
solution (6). C'""' is the cost with the inclusion of the continuous part in the effective 
field distribution. 

48 15.4 0.321 1.23 1.068 
102 31.7 0.311 1.20 1.035 
198 61.3 0.310 1.19 1.032 
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(ii) the possibility that permutation symmetry in the effective fields is broken for 
the graph partitioning problem unlike the spin-glass case. 

In view of the good agreement between the result obtained using the spin-glass 
solution ( 6 )  and the numerical simulation of 3-partitioning, we expect the effect of the 
possible corrections to be very small (a few per cent). We now review them in turn. 
Inclusion of these corrections is the subject of future work. 

(i) It was shown [ 131 that RSB does occur for a Potts spin glass on the Bethe lattice 
at temperatures just below the spin-glass transition. It is plausible that replica symmetry 
is still broken at T = 0 and hence the value of the ground-state energy is altered as in 
the long-range Potts spin glass. A first step towards constructing a solution with RSB 
for the Ising spin glass at T = O  has been proposed recently [14]. It was found that 
in that scheme the improvement in the ground-state energy is less than 1%. In the 
long-ranged Potts spin glasses, the ground-state energy difference between the replica 
symmetric solution and the RSB solution is about 5 %  [5]. 

(ii) Lastly, in the case of bi-partitioning of a graph with finite coordination number, 
Liao [3,12] found a solution that has a lower cost than the Ising spin-glass solution 
and it was suggested that the spin-glass solution may not be the correct solution for 
the graph partitioning problem for graphs with finite connectivity. However, a stability 
analysis has not been carried out for this solution; the mere fact that it leads to a lower 
cost function is not sufficient to demonstrate its validity. A trivial example is that the 
paramagnetic spin-glass solution gives an even lower cost for the graph partitioning. 
In terms of the effective field distribution, the spin-glass solution is equivalent to the 
solution of q-partitioning of a graph if the effective local field distribution 
p(h"', . . . , h'¶') of the graph partitioning problem is permutationally symmetric in its 
arguments. In the case of graphs with an average (but not fixed) finite coordination 
number c, we find that, when 

p(h'",  . . . , h'¶') loses its permutational symmetry. This is a generalisation of the 
bi-partitioning case [3,4]. The physical picture is that in this case the infinite cluster 
can be fitted into one of the subgraphs and hence the system is not frustrated and the 
cost is zero. However, in the present case of fixed coordination number cZ-3, the 
probability that the random graph is connected approaches one as N + CO [ 151 and 
the above argument does not apply. Liao [12] claims that, in the Ising case, the 
symmetry is broken even in the fixed-connectivity case. But his solution does not 
include RSB and it is not yet known if the situation will remain the same when RSB is 
included. 

This work has been supported in part by the National Science Foundation under grant 
number DMR-8709704. 
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